How do the dynamics of battery discharge affects sensor lifetime?

Laura Marie Feeney (SICS) Christian Rohner, Per Gunningberg (Uppsala Univ) Anders Lindgren, Lars Andersson (Pricer AB)

Battery discharge behavior

- complex electro-chemical system
- modeled as a simple "bucket of mA-h"
- contribution: characterize discharge behavior
 - protocol design and evaluation; state of charge estimation

Wireless sensor networks

- WSN power consumption profile is complex
- quantify key macroscopic behaviors
 - synthetic loads, systematically defined load patterns
 - intensity and duration parameters based on typical WSN

- apply load and measure battery output voltage
- Li coin cell (CR2032)
 - personal/body area networks, wildlife

Duty cycle

- lifetime estimation
 - based on lifetime at 100% duty cycle

Duty cycle

- lifetime estimation
 - based on lifetime at 100% duty cycle

Lifetime estimation

- for a 10 mA load
 - under-estimates observed lifetime by as much as a *factor of 3*!

Lifetime estimation

- for a 10 mA load
 - under-estimates observed lifetime by as much as a *factor of 3*!
- for a 4 mA load
 - only slight under-estimate (~10-15%)

Why?

- charge recovery
 - intermittent load utilizes more capacity than continuous load
- rate dependent capacity
 - low current utilizes more capacity than a higher one

WONS 2014 2014/04/03

- model consumed capacity = $\sum i \times t$ or $\int i(t) dt$
- compare load patterns with same time-average current

- model consumed capacity = $\sum i \times t$ or $\int i(t) dt$
- compare load patterns with *same* time-average current

- compare load patterns with same time-average current
- expect them to consume same total capacity

- compare load patterns with same time-average current
- expect them to consume same total capacity

- primary (non-rechargeable) Li-coin cell
 - Li anode oxidized: Li \rightarrow Li⁺ + e⁻
 - Mn0₂ cathode reduced: Mn0₂ + Li⁺ + e⁻ → LiMn^(III)0₂
- discharge behavior depends on chemistry and structure
 - even manufacturer specific

- primary (non-rechargeable) Li-coin cell
 - Li anode oxidized: Li \rightarrow Li⁺ + e⁻
 - Mn0₂ cathode reduced: Mn0₂ + Li⁺ + e⁻ → LiMn^(III)0₂
- discharge behavior depends on chemistry and structure
 - even manufacturer specific

- primary (non-rechargeable) Li-coin cell
 - Li anode oxidized: Li \rightarrow Li⁺ + e⁻
 - Mn0₂ cathode reduced: Mn0₂ + Li⁺ + e⁻ → LiMn^(III)0₂
- discharge behavior depends on chemistry and structure
 - even manufacturer specific

- primary (non-rechargeable) Li-coin cell
 - Li anode oxidized: Li \rightarrow Li⁺ + e⁻
 - Mn0₂ cathode reduced: Mn0₂ + Li⁺ + e⁻ → LiMn^(III)0₂
- discharge behavior depends on chemistry and structure
 - even manufacturer specific

- primary (non-rechargeable) Li-coin cell
 - Li anode oxidized: Li \rightarrow Li⁺ + e⁻
 - Mn0₂ cathode reduced: Mn0₂ + Li⁺ + e⁻ → LiMn^(III)0₂
- discharge behavior depends on chemistry and structure
 - even manufacturer specific

Output voltage under load

- apply a load to a battery
- e.g. lower bit-rate, sub-GHz transceiver

Output voltage under load

- battery output voltage drops
 - internal resistance
 - efficiency of electro-chemical reactions

Output voltage under load

- battery output voltage drops
 - internal resistance
 - efficiency of electro-chemical reactions

Battery output voltage under load

• load response also depends on state-of-charge

Battery output voltage under load

• load response also depends on state-of-charge

Load

- alternate short intense loads and low current loads
- drain ~5% capacity each period
 - based on standard battery test sequence

Device lifetime

- rate dependent capacity
- charge recovery
- state of charge dependence

Device lifetime

- device failure
 - battery cannot maintain output voltage under load
 - depends on cut-off voltage for device electronics
- *not* determined by the charge consumed

Device lifetime

- device failure
 - battery cannot maintain output voltage under load
 - depends on cut-off voltage for device electronics
- not determined by the charge capacity consumed

- macroscopic behaviors are well understood
 - rate-dependent capacity
 - charge recovery
 - soc dependence
 - temperature (future)

- very little data for cheap, non-rechargeable batteries
 - Panasonic Li-coin cell (CR2032), ~225mA-h

- large-scale measurement program cost efficient
- simple, *controlled* resistive loads
 - sensor behavior is messy, simplified loads with realistic parameters
 - variation between batteries (cheap manufacture)

WSN-typical parameters

- Experiments
- · 1 25 mA
- 2 150 ms load
- 50 ms 2.0s rest
- 300 µA mean
- · 20-22°C (ambient)

WSN-typical parameters

- CC2420 (250kb/s)
 - tx: 17mA
 - rx: 18mA

- cpu (active)
 - 1.2-2.4mA (tmotesky)
 - 4.3-5.7mA (cc2480)
- adc
 - 1.2mA

WONS 2014 2014/04/03

- Experiments
- · 1 25 mA
- · 2 150 ms load
- 50 ms 2.0s rest
- · 300 µA mean
- · 20-22C (ambient)
- TR1001 (2-115kb/s)
 - tx: 12mA
 - rx: 1.3-3.8 mA
- SX1212 (25kb/s)
 - rx: 3mA
 - tx: 16mA

- contikiMAC
 - 125ms (2-16Hz)
- pTunes

ANT+

•

- 6/100ms
- 11/350ms
- search: 2.8mA
- tx: 11-15mA
- rx: 17mA
- avg: 20-200µA

Experiments

- simple, synthetic loads, systematic investigation
 - over 50 experiment configurations
- loads with same time-average current
 - focus on intensity (load current) and timing
 - reduce rate dependent capacity effects
- metric: capacity consumed (until 2.0V cut-off)

- rate-dependent capacity
 - as current decreases, utilizable capacity increases

• load patterns with 1mA load current

• load patterns with 4mA peak current

• load patterns with 10mA load current

• load patterns with 25mA load current

Applications

- design
 - data suggests high currents with low duty cycle is OK
- evaluation
 - parameterization and validation of analytic battery models for use in e.g. simulation

- real time state of charge estimation
 - state of charge on deployed device
 - needed for management, also *lifetime* balancing
 - lack of on-device resources
 - off-line modeling? on-device voltage tracking?

Conclusions

- in-depth characterization of Li-coin cell (CR2032)
 - large scale testbed for systematic measurement
 - not a bucket of mA-h
- applications
 - design, evaluation, state of charge estimation

