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Battery discharge behavior

● complex electro-chemical system

● modeled as a simple “bucket of mA-h”

● contribution: characterize discharge behavior

– protocol design and evaluation; state of charge estimation 
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Wireless sensor networks

● WSN power consumption profile is complex

● quantify key macroscopic behaviors

– synthetic loads, systematically defined load patterns

– intensity and duration parameters based on typical WSN
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Testbed

● apply load and measure battery output voltage

● Li coin cell (CR2032)

– personal/body area networks, wildlife
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Duty cycle

● lifetime estimation

– based on lifetime at 100% duty cycle
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Lifetime estimation

● for a 10 mA load

– under-estimates observed lifetime by as much as a factor of 3!
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Lifetime estimation

● for a 10 mA load

– under-estimates observed lifetime by as much as a factor of 3!

● for a 4 mA load

– only slight under-estimate (~10-15%)
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Why?

● charge recovery

– intermittent load utilizes more capacity than continuous load

● rate dependent capacity

– low current utilizes more capacity than a higher one
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Load Intensity

●  model consumed capacity =             or

● compare load patterns with same time-average current 

∑ i×t ∫ i(t )dt
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Load Timing

●  model consumed capacity =             or

● compare load patterns with same time-average current 

∑ i×t ∫ i (t )dt
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Consumed capacity

● compare load patterns with same time-average current

● expect them to consume same total capacity
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Consumed capacity

15 %
 diffe

rence
s

● compare load patterns with same time-average current

● expect them to consume same total capacity
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What is a battery?  It's complicated.

● primary (non-rechargeable) Li-coin cell

– Li anode oxidized: Li → Li+ + e-

– Mn02 cathode reduced: Mn02  + Li+ + e-  →LiMn(III)02

● discharge behavior depends on chemistry and structure

– even manufacturer specific
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What is a battery?  It's complicated.

● primary (non-rechargeable) Li-coin cell

– Li anode oxidized: Li → Li+ + e-

– Mn02 cathode reduced: Mn02  + Li+ + e-  →LiMn(III)02

● discharge behavior depends on chemistry and structure

– even manufacturer specific

Li+ e-
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Output voltage under load

● apply a load to a battery

● e.g. lower bit-rate, sub-GHz transceiver
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Output voltage under load

● battery output voltage drops

– internal resistance

– efficiency of electro-chemical reactions

6.2ms

~10mA
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Output voltage under load

● battery output voltage drops

– internal resistance

– efficiency of electro-chemical reactions
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Battery output voltage under load

● load response also depends on state-of-charge

85% soc 20% soc

1mA load, 11h
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Battery output voltage under load

● load response also depends on state-of-charge

.

85% soc 20% soc

1mA load, 11h
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Load

● alternate short intense loads and low current loads

● drain ~5% capacity each period

– based on standard battery test sequence

22mA x 10s
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Device lifetime

● rate dependent capacity

● charge recovery

● state of charge dependence
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Device lifetime

● device failure

– battery cannot maintain output voltage under load

– depends on cut-off voltage for device electronics

● not determined by the charge consumed
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Device lifetime

● device failure

– battery cannot maintain output voltage under load

– depends on cut-off voltage for device electronics

● not determined by the charge capacity consumed

E
T

C
 B

a
tte

r y a
n

d
 F

u
e

l  C
e

lls  S
w

e
d

e
n

, A
B

2.0V cut-off

device fails



WONS 2014
2014/04/03

 28

Testbed

● macroscopic behaviors are 
well understood

– rate-dependent capacity

– charge recovery

– soc dependence

– temperature (future)
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Testbed

● very little data for cheap, non-rechargeable batteries 

– Panasonic Li-coin cell (CR2032),  ~225mA-h
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Testbed

● large-scale measurement program – cost efficient

● simple, controlled resistive loads

– sensor behavior is messy, simplified loads with realistic 
parameters

– variation between batteries (cheap manufacture)
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WSN-typical parameters
● Experiments

• 1 - 25 mA

• 2 – 150 ms load

• 50 ms - 2.0s rest

• 300 μA mean

• 20-22ºC (ambient)
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WSN-typical parameters

● cpu (active)

– 1.2-2.4mA (tmote-
sky)

– 4.3-5.7mA 
(cc2480)

● adc

– 1.2mA

● contikiMAC

– 125ms (2-16Hz)

● pTunes

– 6/100ms

– 11/350ms

● Experiments

• 1 - 25 mA

• 2 – 150 ms load

• 50 ms - 2.0s rest

• 300 μA mean

• 20-22C (ambient)

● ANT+

– search: 2.8mA 

– tx: 11-15mA

– rx: 17mA

– avg: 20-200μA

● CC2420 (250kb/s)

– tx: 17mA

– rx: 18mA 

● TR1001 (2-115kb/s)

– tx: 12mA

– rx: 1.3-3.8 mA

● SX1212 (25kb/s)

– rx: 3mA

– tx: 16mA 

q
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Experiments

● simple, synthetic loads, systematic investigation

– over 50 experiment configurations

● loads with same time-average current

– focus on intensity (load current) and timing 

– reduce rate dependent capacity effects

● metric: capacity consumed (until 2.0V cut-off)
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Results

● rate-dependent capacity

– as current decreases, utilizable capacity increases
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Results

● load patterns with 1mA load current
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Results

● load patterns with 4mA peak current
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Results

● load patterns with 10mA load current



WONS 2014
2014/04/03

 38

Results

● load patterns with 25mA load current
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Applications
● design

– data suggests high currents with low duty cycle is OK

● evaluation

– parameterization and validation of analytic battery models for use 
in e.g. simulation 

● real time state of charge estimation

– state of charge on deployed device

– needed for management, also lifetime balancing

– lack of on-device resources

– off-line modeling? on-device voltage tracking?
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Conclusions

● in-depth characterization of Li-coin cell (CR2032)

– large scale testbed for systematic measurement 

– not a bucket of mA-h

● applications

– design, evaluation, state of charge estimation
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